Copy Mean: A New Method to Impute Intermittent Missing Values in Longitudinal Studies
نویسندگان
چکیده
Longitudinal studies are those in which the same variable is repeatedly measured at different times. These studies are more likely than others to suffer from missing values. Since the presence of missing values may have an important impact on statistical analyses, it is important that they should be dealt with properly. In this paper, we present “Copy Mean”, a new method to impute intermittent missing values. We compared its efficiency in eleven imputation methods dedicated to the treatment of missing values in longitudinal data. All these methods were tested on three markedly different real datasets (stationary, increasing, and sinusoidal pattern) with complete data. For each of them, we generated nine types of incomplete datasets that include 10%, 30%, or 50% of missing data using either a Missing Completely at Random, a Missing at Random, or a Missing Not at Random missingness mechanism. Our results show that Copy Mean has a great effectiveness, exceeding or equaling the performance of other methods in almost all configurations. The effectiveness of linear interpolation is highly data-dependent. The Last Occurrence Carried Forward method is strongly discouraged.
منابع مشابه
A New Algorithm to Impute the Missing Values in the Multivariate Case
There are several methods to make inferences about the parameters of the sampling distribution when we encounter the missing values and the censored data. In this paper, through the order statistics and the projection theorem, a novel algorithm is proposed to impute the missing values in the multivariate case. Then, the performance of this method is investigated through the simulation studies. ...
متن کاملImputation of missing longitudinal data: a comparison of methods.
BACKGROUND AND OBJECTIVES Missing information is inevitable in longitudinal studies, and can result in biased estimates and a loss of power. One approach to this problem is to impute the missing data to yield a more complete data set. Our goal was to compare the performance of 14 methods of imputing missing data on depression, weight, cognitive functioning, and self-rated health in a longitudin...
متن کاملAccuracy evaluation of different statistical and geostatistical censored data imputation approaches (Case study: Sari Gunay gold deposit)
Most of the geochemical datasets include missing data with different portions and this may cause a significant problem in geostatistical modeling or multivariate analysis of the data. Therefore, it is common to impute the missing data in most of geochemical studies. In this study, three approaches called half detection (HD), multiple imputation (MI), and the cosimulation based on Markov model 2...
متن کاملA Comparative Review of Selection Models in Longitudinal Continuous Response Data with Dropout
Missing values occur in studies of various disciplines such as social sciences, medicine, and economics. The missing mechanism in these studies should be investigated more carefully. In this article, some models, proposed in the literature on longitudinal data with dropout are reviewed and compared. In an applied example it is shown that the selection model of Hausman and Wise (1979, Econometri...
متن کاملچند رویکرد برخورد با مقادیر گمشده متغیرهای کمی و بررسی اثر آنها بر نتایج حاصل از یک کارآزمایی بالینی
Background and Objectives: A major challenge that affects the longitudinal studies is the problem of missing data. Missing in the data may result in the loss of part of the information which reduces the accuracy of the estimator and obtain the results will be biased and inaccurate. Therefore, it is necessary to evaluate the missing data mechanism from a longitudinal research and to consider thi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013